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Abstract

Due to the rapid economic growth and the heavy reliance on fossil fuels, China has become

one of the countries with the highest sulfur dioxide (SO2) emissions, which pose a severe

challenge to human health and the sustainable development of social economy. In order to

cope with the serious problem of SO2 pollution, this study attempts to explore the spatial

temporal variations of industrial SO2 emissions in China utilizing the Defense Meteorological

Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime stable light (NSL)

data. We first explored the relationship between the NSL data and the statistical industrial

SO2 emissions at the provincial level, and confirmed that there was a positive correlation

between these two datasets. Consequently, 17 linear regression models were established

based on the NSL data and the provincial statistical emissions to model the spatial-temporal

dynamics of China’s industrial SO2 emissions from 1997 to 2013. Next, the NSL-based esti-

mated results were evaluated utilizing the prefectural statistical industrial SO2 emissions

and emission inventory data, respectively. Finally, the distribution of China’s industrial SO2

emissions at 1 km spatial resolution were estimated, and the temporal and spatial dynamics

were explored from multiple scales (national scale, regional scale and scale of urban

agglomeration). The results show that: (1) The NSL data can be successfully applied to esti-

mate the dynamic changes of China’s industrial SO2 emissions. The coefficient of determi-

nation (R2) values of the NSL-based estimation results in most years were greater than 0.6,

and the relative error (RE) values were less than 10%, when validated by the prefectural sta-

tistical SO2 emissions. Moreover, compared with the inventory emissions, the adjusted coef-

ficient of determination (Adj.R-Square) reached 0.61, with the significance at the 0.001

level. (2) During the observation period, the temporal and spatial dynamics of industrial SO2

emissions varied greatly in different regions. The high growth type was largely distributed in

China’s Western region, Central region, and Shandong Peninsula, while the no-obvious-

growth type was concentrated in Western region, Beijing-Tianjin-Tangshan and Middle

south of Liaoning. The high grade of industrial SO2 emissions was mostly concentrated in
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China’s Eastern region, Western region, Shanghai-Nanjing-Hangzhou and Shandong Pen-

insula, while the low grade mainly concentrated in China’s Western region, Middle south of

Liaoning and Beijing-Tianjin-Tangshan. These results of our research can not only enhance

the understanding of the spatial-temporal dynamics of industrial SO2 emissions in China,

but also offer some scientific references for formulating feasible industrial SO2 emission

reduction policies.

Introduction

Sulfur dioxide (SO2) is one of the main pollutants in the atmosphere, which is an important

indicator to measure whether the atmosphere is polluted [1]. SO2 is released when burning

materials containing sulfur, which is found in all types of coal and oil across the world in vary-

ing proportions. As an acidic and toxic gas, SO2 leads to global acid rain, visibility degradation,

destroy of terrestrial and aquatic ecosystems and dangerous impacts on the human health [2–

6]. In brief, it causes serious losses to the whole society and the economy. SO2 in the atmo-

sphere can be emitted from both natural and anthropogenic sources [7]. Natural SO2 sources

mainly come from oxidation of biogenic dimethyl sulfide and volcanic eruption [8]. While, the

primary anthropogenic SO2 emission is from fossil fuel consumption, especially for power

generation, and other industrial production activities [9]. It is estimated that anthropogenic

emissions are the main source of global SO2 emissions [10, 11].

China is one of the countries with the highest SO2 emissions [12] and the largest area

exposed to acid precipitation in the world [13], because its huge economy relies heavily on fos-

sil fuels as an energy source [14]. In 2015, China emitted 18.591 million tons of SO2, of which

83.73% was industrial SO2 [15]. In order to reduce SO2 emission to mitigate the adverse

impacts, a range of measures has been advanced by the Chinese government, including install-

ing flue gas desulfurization on facilities power plants [16], increasing the proportion of non-

fossil fuels [17], and carrying out a plan that the SO2 emission in 2020 shall reduce by 15%

compared with 2015 [18]. Although the Chinese government has made tremendous efforts to

control the air quality, the current situation of air pollution is still not optimistic, as for the air

quality in many cities still could not meet the national air quality standards [19]. For instance,

in 2017, only 99 out of the 338 cities in China met the environmental air quality standards,

while 70.7% failed to achieve the national air quality standards [20]. More seriously, SO2 can

affect the atmosphere and environment on a global scale [21, 22]. It means that studying on

SO2 emissions in China is also of great significance to improve global environmental perfor-

mance. Therefore, it is urgently necessary to explore the dynamic characteristics of SO2 emis-

sions in China, for obtaining a better understanding of the current air pollution situation and

formulating appropriate emission reduction policies.

Remote sensing can provide valuable data sources in the research of detecting the spatial

and temporal changes of geospatial information. Numerous literatures have proved that

DMSP-OLS nighttime light imagery can perform well in the detection of socioeconomic activ-

ities, such as, monitoring urban dynamics [23–26], measuring spatial distribution of popula-

tion [27–30], investigating economic development [31–33], estimating power energy

consumption [34–37], etc. The significant correlation between the DMSP-OLS NSL data and

energy consumption has been verified [38, 39], and the NSL data has been successfully applied

to fossil fuel related CO2 emissions [40–44] and pollutant emissions (such as PM2.5 emissions

and nitrogen oxides emissions) [45–50]. For instance, Ghosh et al. [41] applied nighttime
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satellite imagery favorably to map fossil fuel CO2 emissions. Li et al. [45] utilized nighttime

light imagery to PM2.5 pollution estimation in Beijing using an established model and the aver-

age precision of the estimation reached 0.796. Xu et al. [46] taking Shanghai, China as an

example, verified the effectiveness of DMSP nighttime light images in predicting urban daily

PM2.5 concentrations. Toenges-Schuller et al. [47] employed DMSP-OLS nighttime light

images for detecting the global distribution patterns of anthropogenic nitrogen oxides emis-

sion. Jiang et al. [48] quantified the spatial-temporal dynamics of nitrogen oxides emissions in

China utilizing a NSL based model. In summary, DMSP-OLS NSL data has been proved to be

promising in monitoring fossil fuel related CO2 emissions and pollutant emissions. As anthro-

pogenic SO2 emissions are mainly from fossil fuel combustion [51, 52], thus, there is a good

potential to estimate industrial SO2 emissions based on NSL data. Moreover, existing

researches have also demonstrated that there was a significant correlation between nighttime

light data and gross domestic product of secondary industry [53, 54]. Therefore, theoretically,

the industrial SO2 emissions can also be estimated utilizing nighttime light data. In addition,

different from the bottom-up emission inventories which are usually highly uncertain and not

timely updated [55], NSL data can provide spatial explicit images with high resolution in time.

But there are few studies about whether and how the NSL data could be applied to estimate the

spatial-temporal dynamics of industrial SO2 emissions. Hence, we tried to apply the nighttime

light data to estimate industrial SO2 emissions in China.

This study aims to test the utility of modeling the spatiotemporal dynamics changes of Chi-

na’s industrial SO2 emission based on DMSP-OLS nighttime stable light data. Specifically, the

major objectives of our study are: (1) confirming a positive correlation was truly existed

between the industrial sulfur dioxide emissions and DMSP-OLS NSL data, (2) building models

to investigate China’s industrial SO2 emission utilizing the NSL data, and evaluating the esti-

mation accuracy using statistical emissions and emission inventory data, respectively, (3)

exploring the spatiotemporal distribution characteristics of China’s industrial SO2 emission

from three different scales on the basis of the NSL-based estimation results, and putting for-

ward some suggestions on industrial SO2 emission mitigation, accordingly.

Study area and data

Study area

In order to learn more about the spatiotemporal variations and changes of industrial SO2 emis-

sions in China for 1997–2013, the research area was determined by three different administra-

tive levels (Fig 1). National scale is the first administrative level. In recent years, a vast volume

of SO2 emitted from industrial production has brought about serious atmospheric pollution. It

is necessary to explore the overall situation of industrial SO2 emissions in the whole country

firstly. Considering that the statistical industrial SO2 emissions data was absent in some areas

(Hong Kong, Macao and Taiwan), the first level was limited to mainland China. Then, regional

scale is the second level. Because of the imbalanced socioeconomic development in our coun-

try, great disparities of industrial SO2 emissions within different economic regions have been

formed. In order to reveal the differences among regions, we divided the research area into

four regions according to its geographical position and socioeconomic development level. So,

Eastern region, Central region, Western region and Northeastern region were studied sepa-

rately. Finally, the scale of urban agglomeration is the third administrative level. As far as we

know, the population and economic growth of China were mainly concentrated in urban

agglomerations, these areas contributed more to industrial SO2 emissions in the whole coun-

try. Consequently, it is of great significance to explore the characteristic of industrial SO2 emis-

sions in urban agglomerations for reducing SO2 pollution. Therefore, six representative urban
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agglomerations were finally chosen as the third level, namely Middle south of Liaoning, Bei-

jing-Tianjin-Tangshan, Shandong Peninsula, Pearl River Delta, Sichuan-Chongqing and

Shanghai-Nanjing-Hangzhou.

Data

There are mainly two kinds of data sets utilized in this research, namely, DMSP-OLS NSL data

and statistical industrial SO2 emissions data. NSL data from 1997 to 2013 were derived from

the National Oceanic and Atmospheric Administration’s National Geophysical Data Center

(NOAA/NGDC) website (http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.

html). These NSL images measured lights on the Earth’s surface from human settlements, road

networks and other sites with continuous lighting. The digital number (DN) value of the NSL

imagery ranges from 0 to 63. And, the spatial resolution of the NSL images is 0.0083˚(about 1

km). Due to the following two shortcomings of DMSP-OLS NSL data: (1) pixel saturation

effect and (2) discontinuity and incomparability phenomenon, it is necessary to intercalibrate

the data before using it. In order to intercalibrate the NSL data, Shi et al. [37] developed a

modified invariant region (MIR) method, consisting of reduction of saturation effect and

Fig 1. Study area.

https://doi.org/10.1371/journal.pone.0238696.g001
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correction of discontinuity effect. In our study, the time series NSL data were directly intercali-

brated based on the specific equations and parameters reported in the article of Shi et al.

Additionally, statistical data of industrial SO2 emissions including provincial statistics and

prefectural statistics were derived from Statistical Yearbooks of different provinces (1998–

2014) and China City Statistical Yearbook (2004, 2005, 2009, 2010, 2013 and 2014). In detail,

the provincial statistics emissions were used for modeling the industrial SO2 emissions at 1km

resolution, while the prefectural statistics emissions were used to assess the accuracy of simula-

tion. The industrial SO2 emission data can be found in the S1 and S2 Files in the Supporting

information section.

Methodology

For investigating the spatial-temporal dynamics of China’s industrial SO2 emissions, main

research procedures include: (1) correlation analysis between nighttime light images and sta-

tistical industrial SO2 emissions at the provincial level; (2) estimation of industrial SO2 emis-

sions at 1 km resolution based on NSL data and provincial statistics emissions; (3) accuracy

assessment of industrial SO2 emissions estimation by prefectural statistical emission data and

emission inventory data; (4) multiscale analysis of the spatiotemporal characteristics of indus-

trial SO2 emissions.

Correlation analysis

Correlation analysis was employed to analyze whether there exists a significant correlation

between DMSP nighttime light images and statistical industrial SO2 emissions or not. The for-

mulas we used for correlation analysis can be represented as follows:

rxy ¼

Xn

k¼1

ðxk � xÞðyk � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

ðxk � xÞ2
Xn

k¼1

ðyk � yÞ2
s ð1Þ

x ¼
1

n

Xn

k¼1

xk ð2Þ

y ¼
1

n

Xn

k¼1

yk ð3Þ

Where, rxy is expressed as the degree of correlation between variable x and variable y, whose

value ranges from -1 to 1. And the closer absolute value of rxy is to 1, the stronger correlation

between x and y is. In this paper, variables x and y represent DN values of DMSP nighttime

light images and industrial SO2 emissions, respectively.

Estimation of industrial SO2 emissions

Once the significant positive correlation between NSL data and statistical industrial SO2 emis-

sions data is confirmed, industrial SO2 emission at the provincial level can be simulated using

NSL data. Then, the linear regression model was performed to estimate industrial SO2 emis-

sions, and the equation can be described as the following:

SP ¼ a� TNSLþ b ð4Þ
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Where SP stands for the provincial industrial SO2 emissions, TNSL represents the total night-

time stable light values of each province, a is the regression coefficient, and b stands for the

intercept.

Considering the absence of industrial SO2 emissions at the pixel level, the positive correla-

tion between NSL data and industrial SO2 emissions is assumed to be constant within the

same province. Additionally, provincial statistical industrial SO2 emissions data were

employed to correct the estimation models to reduce the error within a provincial unit. The

formula is:

CSi ¼ SSp � ðSi � TSpÞ ð5Þ

Where CSi indicates the corrected industrial SO2 emissions of the i pixel; SSp stands for the sta-

tistical industrial SO2 emissions of the p province; Si is the estimated industrial SO2 emissions

of the i pixel; TSp represents the estimated industrial SO2 emissions of the p province.

Accuracy assessment of industrial SO2 emissions estimation

It is necessary and crucial to assess the accuracy of industrial SO2 emissions estimation. Two

indicators, the coefficient of determination (R2), and the relative error (RE) were often used to

assess the accuracies of simulated results [56, 57]. For instance, Shi et al. [37] modeled the spa-

tiotemporal dynamics of global electric power consumption by DMSP-OLS NSL data, and 128

samples of country-level statistical electric power consumption data from 1992 to 2012 were

collected to calculate the R2 and RE which were employed to evaluate the estimation accuracy.

To validate the accuracy of industrial SO2 estimation models, R2, and RE are calculated:

R2 ¼

Xm

c¼1

ðSc � SScÞ
2

Xm

c¼1

ðSSc � SScÞ
2

ð6Þ

RE ¼
Sc � SSc
SSc

ð7Þ

Where, m is the total number of validation regions which was set to 263 in our research, SSc
stands for the statistical industrial SO2 emissions of the c city, SSc indicates the average of SSc,
Sc is the estimated industrial SO2 emissions of the c city. In the above three parameters, the

higher R2 value and the lower absolute RE values indicate a higher simulation accuracy.

Evaluation of spatiotemporal dynamics of industrial SO2 emissions

First of all, the average industrial SO2 emissions from 1997 to 2013 was calculated using the

following equation to analyze the spatial pattern of industrial SO2 emissions:

Si ¼

X2013

n¼1997
Si

t
ð8Þ

Where Si stands for the average industrial SO2 emissions in pixel i for 1997–2013, and t indi-

cates the total number of years which was set to 17 in our research.

Next, the temporal variation of industrial SO2 emissions between 1997 and 2013 can be

described by the following formula:

Stemi ¼ S2013

i � S1997

i ð9Þ
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Where Stemi stands for the temporal variation of industrial SO2 emissions in pixel i from 1997

to 2013.

Then, the Natural Break method, which can maximize the differences between classes with

no effect of human factors [58], was used for investigating the spatial and temporal changes of

industrial SO2 emissions in China. In detail, the spatial variation map of industrial SO2 emis-

sions was divided into five grades: low (< 3 t), relatively low (3–15 t), medium (14–37 t), rela-

tively-high (37–70 t) and high (> 70 t). And, the temporal variation of China’s industrial SO2

emissions was sorted into 4 types: no-obvious-growth (< 2t), low growth (2–9 t), moderate-

growth (9–22 t), and high growth (> 22 t).

Results

Correlation analysis results

The relationship between the DMSP nighttime light imagery and industrial SO2 emissions for

1997–2013 was confirmed utilizing the formulas as described in Section 3.1. And the correla-

tion coefficients between the two from 1997 to 2013 were listed in Table 1. Obviously, the cor-

relation coefficients over the observation period are all greater than r0.001 = 0.5974, which

demonstrated that the correlation between these two datasets was significant at the level of α =

0.001. Based on this, 17 liner regression models were constructed to estimate industrial SO2

emissions. And the F values of these models are all greater than F0.005 (1, 29) = 9.23, revealing a

statistical significance at the level of α = 0.005.

Spatiotemporal dynamics of industrial SO2 emissions for 1997–2013. The spatial-tem-

poral variations of China’s industrial SO2 emissions during the period of 1997–2013 was

mapped in Fig 2. In terms of spatial distribution, industrial SO2 emissions in China were

mainly concentrated in the eastern half of the country. Specifically, the high industrial SO2

emissions were clearly identified in some economically developed cities like Yangtze River

Delta, Sichuan-Chongqing, and Pearl River Delta and Huang-Huai-Hai region. While, the low

Table 1. Correlation analysis results.

Year Correlation coefficient F value

1997 0.718 30.84

1998 0.731 33.37

1999 0.714 30.20

2000 0.713 30.03

2001 0.755 38.54

2002 0.762 40.25

2003 0.728 32.72

2004 0.742 35.62

2005 0.761 39.91

2006 0.730 33.04

2007 0.741 35.28

2008 0.747 36.63

2009 0.743 35.83

2010 0.747 36.68

2011 0.738 34.64

2012 0.743 35.81

2013 0.720 31.22

https://doi.org/10.1371/journal.pone.0238696.t001
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industrial SO2 emissions were largely distributed in the western and northeastern China. In

terms of the temporal variations, China’s industrial SO2 emissions increased significantly in

the initial period from 1997 to 2013 and then slowly decreased. Overall, the temporal and spa-

tial changes of industrial SO2 emissions in China are significant.

Fig 2. Maps of China’s industrial SO2 emissions for 1997–2013.

https://doi.org/10.1371/journal.pone.0238696.g002
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Fig 3. Temporal variations (a) and spatial variations (b) of China’s industrial SO2 emissions for 1997–2013. The

non-positive growth was regarded as no-obvious growth.

https://doi.org/10.1371/journal.pone.0238696.g003
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Spatiotemporal dynamics of industrial SO2 emissions at national scale. Fig 3a showed

the spatial distribution of the four types, which reflected the temporal variations of industrial

SO2 emissions during the period of 1997–2013. Fig 3b described the five grades of industrial

SO2 emissions, which indicated the spatial variations of industrial SO2 emissions. And, Fig 4

showed the area ratios of these four types (Fig 4a) and five grades (Fig 4b) in China. On the

whole, we can find that the growth of industrial SO2 emissions was mostly distributed in

6.32% of China’ total areas (Figs 3a and 4a). Specifically, two types (including high-growth

Fig 4. Areal percentage of each type (a) and each grade (b) in China.

https://doi.org/10.1371/journal.pone.0238696.g004
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type and moderate-growth type) with relatively rapid growth, accounting for 1.35% of the

national area, were mainly distributed in coastal areas and some metropolitan areas, including

Chongqing and provincial capital cities. While, the other two types reflecting time variations

of industrial SO2 emissions, including no-obvious-growth type and low-growth type, which

occupy 93.68% and 4.97% of the total national areas respectively, were located in the Western

and Northeastern regions mainly. As for spatial variations, there existed a similar variations

pattern. The low and relatively-low grade of industrial SO2 emissions were mainly distributed

in the Western region, covering 88.97% and 8.60% of the total national land, respectively (Figs

3b and 4b). Moreover, the high, relatively-high and medium grades accounted for 0.20%,

0.64%, 1.59% of the total national land, respectively, mainly distributing in the coastal and

Central areas and Sichuan-Chongqing.

Spatiotemporal dynamics of industrial SO2 emissions at regional scale. Fig 5 described

the areal percentage of each type and each grade in China’s four regions. According to Fig 5a,

the high-growth type was mostly distributed in the Western region and Central region, occu-

pying 62.47% and 25.17% of the total areas of that type, respectively. The moderate-growth

and low-growth types were comparatively evenly located in China’s Western region, Central

region and Eastern region. While, the no-obvious-growth type was concentrated in the West-

ern region mainly, covering 73.31% of the total areas of that type. Summarily, the high-growth

of the industrial SO2 emissions was mostly located in the Western region, followed by Central

region, and the no-obvious-growth was mainly located in the Western region. Both the high-

growth and no-obvious-growth of the industrial SO2 emissions accounted for a large share in

the western region, partly due to the large size of this region. Additionally, it is notable that the

distribution of these four types in the Northeastern region was relatively small. This probably

resulted from its relatively small size. As for the areal percentage of each grade, 38.57% of the

high grade was distributed in Eastern region, 30.82% was located in Western region, 23.46% in

Central region and the rest was located in Northeastern region (Fig 5b). The relatively- high

grade was largely distributed in Eastern region where accounted for 52.82% of the total areas

of this grade. While, 76.12% of the low grade was located in the Western region, with a fairly

small proportion distributed in the Eastern, Central, and Northeastern regions. Similar to the

four types, the proportions of the five grades of industrial SO2 emissions in the Northeastern

region were all relatively low. In summary, the high grade of industrial SO2 emissions was

mostly concentrated in the Eastern and Western regions, while the low grade was mainly

located in the Western region.

Spatiotemporal dynamics of industrial SO2 emissions at urban agglomeration scale.

The representative six urban agglomerations covered 7.68% land area of this country, but con-

tributed 35.33% of China’s industrial SO2 emissions for 1997–2013. In terms of the percentage

of the total areas, 88.55% of Beijing-Tianjin-Tangshan and 86.17% of Middle south of Liaoning

showed a no-obvious-growth type (Fig 6a). The growth of industrial SO2 emissions was 21.32%

in Pearl River Delta and 17.01% in Shanghai-Nanjing-Hangzhou presented a low-growth type,

whereas 7.86% in Shanghai-Nanjing-Hangzhou and 6.41% in Pearl River Delta described a

moderate-growth type. Besides, Shandong Peninsula should be paid much more attention to,

because the areal percentage of high-growth type in this urban agglomeration was the biggest,

reaching 1.27 percent. To sum up, the high-growth type of industrial SO2 emissions was mainly

located in Shandong Peninsula, while Beijing-Tianjin-Tangshan and Middle south of Liaoning

showed a no-obvious-growth variation. Moreover, the low grade of industrial SO2 emissions in

Middle south of Liaoning and Beijing-Tianjin-Tangshan were 66.79% and 58.10%, respectively

(Fig 6b). In addition, 3.27% in the Shanghai-Nanjing-Hangzhou showed a high grade and

10.76% presented a relatively-high grade. 2.43% of Shandong Peninsula presented a high grade

and 4.54% showed a relatively-high grade. Summarily, the high grade of industrial SO2
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emissions was concentrated in Shanghai-Nanjing-Hangzhou and Shandong Peninsula, while

Middle south of Liaoning and Beijing-Tianjin-Tangshan presented a low grade.

Discussion

Accuracy evaluation of industrial SO2 emissions estimation

Since we used the provincial statistical data to estimate the industrial SO2 emissions, it is rea-

sonable and reliable to assess the accuracy of the estimation models utilizing the industrial SO2

Fig 5. Areal percentage of each type (a) and each grade (b) in the four regions.

https://doi.org/10.1371/journal.pone.0238696.g005
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emission data at the prefectural level. Based on data availability, statistical industrial SO2 emis-

sions of 263 cities were selected to validate the estimated industrial SO2 emissions in 2003,

2004, 2008, 2009, 2012 and 2013. Accordingly, two indicators, R2 and RE were calculated to

reflect the accuracy results (Fig 7).

It can be found that the minimum coefficient of determination (R2), was approximately

0.58, and all the other R2 values were higher than 0.6. Additionally, the figure also reflected

Fig 6. Areal percentage of each type (a) and each grade (b) within the six urban agglomerations.

https://doi.org/10.1371/journal.pone.0238696.g006
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that the RE was 18.07% for 2003, 9.38% for 2004, 12.60% for 2008, 8.99% for 2009, 4.08% for

2012 and 7.72% for 2013, respectively. In other words, the maximum relative error (RE) was

18.07%, and most of the RE values were lower than 10 percent. The results of our study are

acceptable in comparison with the previous researches [49, 50, 57, 59]. Ji et al. [49] estimated

Fig 7. Validation scatters between the estimated and statistical industrial SO2 emissions.

https://doi.org/10.1371/journal.pone.0238696.g007
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China’s PM10 emissions using DMSP-OLS data, the estimation accuracy was validated by city-

level statistical PM10 emissions for 1995, 2000 and 2005, and the R2 were 0.5217, 0.5437, and

0.5158, respectively. Zhao et al. [57] employed nighttime light datasets to simulate urban resi-

dential CO2 emissions in China, and the maximum RE is 23.084%, the average absolute value

of RE is 12.84%.

Moreover, in order to further evaluate the reliability of the NSL-based estimation results,

we compared the estimated industrial SO2 emissions with the Multi-resolution Emission

Inventory for China (MEIC) database, which is a bottom-up emission inventory framework

developed and maintained by Tsinghua University [60]. The emission inventory utilized in

this article was downloaded from http://www.meicmodel.org/dataset-mix.html, where it is

freely available for non-commercial purposes. Based on the availability of data, we compared

the emissions of 356 prefecture level cities in 2008 and 2010. And the comparison results are

shown in Fig 8. It can be discovered that the Adj.R-Square reached 0.61, with the significance

at the 0.001 level. In other words, the DMSP-OLS NSL-based estimation results are acceptable

compared with the emissions estimated by other approach.

Therefore, the accuracy evaluation results show that the industrial SO2 emissions in China

can be modeled by NSL data. In addition, it is worth noting that the inconsistency of statistical

Fig 8. Comparison between inventory emissions by MEIC and estimated emissions by NSL at the prefectural level. Data in years of 2008, 2010; 712

samples.

https://doi.org/10.1371/journal.pone.0238696.g008
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criterion between provincial and municipal statistical data affects the simulation accuracy to a

certain extent. We believe that the simulation accuracy will be improved if the availability and

reliability of statistical data was enhanced.

Suggestions for industrial SO2 emissions reduction

In order to reduce China’s industrial SO2 emissions to achieve the sustainable development of

social economy, more efforts should be made to adjust, optimize and upgrade the industrial

structures and enhance the energy utilizing efficiency. Considering the great differences in

economic development among regions, the Chinese government should adopt differentiated

mitigation strategies for different regions. For the Eastern and Central regions with higher lev-

els of economic development, the reduction strategies of industrial SO2 emissions should focus

on adjusting and optimizing the industrial structure. High energy-consumed industries, such

as the manufactures of chemical materials and products, metal smelting and calendering, pro-

duction and supply of electric power and hot power should be close down or reformed through

improving the manufacturing technology, technologic process and production equipment. At

the same time, the government should vigorously develop the low-energy-consuming indus-

tries such as information services, financial insurance, Internet and tourism, actively promote

industrial upgrading and change the situation of heavy industrial structure. Due to the West-

ern and Northeastern regions are mainly dominated by energy-related and heavy industries,

the reduction strategies of industrial SO2 emissions should put more emphasis on the energy

structure optimizations and energy efficiency improvement in these two regions. Since these

two regions are all at the initial stages of China’s economic development, it seems to be unfea-

sible and unrealistic for them to alter the coal-based energy consumption structure at the pres-

ent stage. But, reducing industrial SO2 emissions through improving energy efficiency and the

performance of flue gas desulfurization facilities seems to be more feasible and effective, in a

short-term period. In a long run, the Western and Northeastern regions with abundant wind

and solar energy resources, can gradually develop and utilize these renewable energy sources

to replace the coal-dominated energy structure. Besides, related laws and policies should be

timely formulated for facilitating the industrial SO2 emissions reduction in the whole country.

For example, extra taxation should be imposed on the industries with high industrial SO2

emissions in the Eastern and Central regions. While, in the Western and Northeast regions,

tax breaks, loan concessions and fiscal subsidy could be granted to the industries using

renewable energies or developing advanced technologies for lower industrial SO2 emissions.

Additionally, for the six representative urban agglomerations, industrial SO2 emissions in

Shandong Peninsula was not only higher in grade, but also more obvious in increasing trend.

Therefore, more attention should be paid to industrial SO2 emission reduction of this urban

agglomerations.

Conclusions

In order to cope with the industrial SO2 pollution problems in China, this study explored the

spatiotemporal dynamics of industrial SO2 emissions from 1997 to 2013, and put forward rele-

vant suggestions on industrial SO2 emission mitigation. On the basis of proving that there was

a positive correlation between the DMSP-OLS stable lights and industrial SO2 emissions, we

tried to utilize NSL data to simulate industrial SO2 emissions. By building linear regression

models, we estimated China’s industrial SO2 emissions at 1 km resolution from 1997 to 2013,

and evaluated the NSL-based estimation results. The accuracy evaluation results showed that

the NSL-based estimation results were acceptable. Eventually, we investigated the spatiotem-

poral dynamic changes of China’s industrial SO2 emissions from three different scales, and
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proposed corresponding reduction suggestions for industrial SO2 emissions. The estimation

results apparently exhibited that the distribution of industrial SO2 emissions differed greatly

during the investigation period. Specifically, the high growth type of industrial SO2 emissions

was mainly distributed in the Western region, Central region, and Shandong Peninsula, while

the no-obvious-growth type was concentrated in Western region, Beijing-Tianjin-Tangshan

and Middle south of Liaoning. And, the high grade was concentrated in Eastern China, West-

ern region, Shanghai-Nanjing-Hangzhou, and Shandong Peninsula, while the low grade

mostly located in Western region, Middle south of Liaoning and Beijing-Tianjin-Tangshan.

Seeing that the spatio-temporal changes of industrial SO2 emissions in different regions varied

greatly, reduction strategies in Eastern China and Central China should put emphasis on

industrial restructuring, while in Western China and Northeastern China, more attentions

should be paid to optimize the regional energy structure and improve the energy utilization

efficiency.

The findings of our research can not only contribute to comprehensively comprehend the

regional differences of spatiotemporal industrial SO2 emission dynamics at the multiple scales,

but also give some scientific references for formulating feasible industrial SO2 emission reduc-

tion policies. But, there are limitations that are worth mentioning. First, the provincial statisti-

cal industrial SO2 emissions which were used to model the distributions of China’s industrial

SO2 emissions, may be distorted due to the inconsistent statistical caliber and artificial error.

Second, although the linear regression model established in this study based on NSL data, was

proved to be an effective means to estimate industrial SO2 emissions, there indeed exist errors

with NSL data as the only index in the simulation models. In order to improve the simulation

accuracy, other indicators (such as economic development, industrial structure, land use data,

etc.) should also be taken into account when establishing estimation models. In addition, other

simulation methods (like panel data analysis, exponential model, and logarithmic model, etc.)

should also be tried and compared to determine which model will be better. Third, as for the

spatiotemporal dynamics of industrial SO2 emissions varied greatly from different regions,

the driving mechanism of industrial SO2 emissions in China should be detected in a follow-up

study.
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